Experiments for Heat Transfer Diagnostics: IR Emissivity Issues

ALPS e-Meeting May 4, 2001

T. Lutz, J. McDonald, T. Tanaka, R. Nygren, M. Ulrickson

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94AL85000.

Measurement and interpretation of surface temperatures of low emissivity surfaces is by no means straightforward.

Objective: Develop working systems to measure the surface temperatures of flowing liquid surfaces.

- ✓ measure surface temperatures in static liquid metal pools; identify issues and develop useful techniques
- build and operate a flowing liquid (Li) metal loop
- measure surface temperatures of flowing liquid metal
- collaborate with others on heat transfer experiments
- collaborate with others in preparing LM modules for experiments in confinement devices (NSTX, C-MOD,..)

IR diagnostic error sources

Surface

- reflections of other sources (direct and secondary)
 - chamber wall reflectivity
 - filaments and heaters
 - plasma facing components
- variations
 - contamination
 - phase change

Optical path

- diagnostic window transmission
- gas / vapor absorption
- ionized gas / vapor emission (e.g. Li emission at 2.44μm)

IR Diagnostics Experiments

Gallium

- Vacuum
- Argon cover gas with windows
- Argon cover gas without windows

Lithium

Vacuum (data reported with estimated window transmission correction)

Drude Emissivity Calculations

- Based on free electron model (ε=f[R_H, ρ_e ,θ,λ])
- Wavelengths of detectors 2, 3, 3.9, 5 μm
- Temperature range 30-390 C

Test Configuration

Top View

Instruments to Characterize Surface and Bulk Temperature

Name	Temperature range (°C)	Wavelength (µm)	Emissivity Range	Windows
Pyrometer (IRCON)	70–220	2–2.6	0.001 – 0.999	Sapphire
Pyrometer (Landmark)	130–550	2.05–2.55	0.1 – 1.0	ZnSe and WF Ouartz
Pyrometer (IRCON)	300–1300	4.8–5.3	0.1 - 1.0	ZnSe and Sapphire
Infrared camera (Inframetrics)	25–500+	2-14 with 3.9 filter	1.0	ZnSe and NaCl, later, LW Quartz
Thermocouple (Type K)	0–1000	N/A	N/A	N/A

Gallium Apparent Emissivity

Argon cover gas (no correction for gas absorption)

Gallium Apparent Emissivity

Argon cover gas (no correction for gas absorption)

Gallium Corrected Emissivity and Window Transmission Factor Mid Range Pyrometer (2.05-2.55 microns)

Emissivity of Lithium using Drude Model 40 degree angle of incidence

Liquid Lithium Emissivity Corrected Data (estimated window transmission correction)

Conclusions

Commercial instruments may be usable for liquid metal temperature measurements with proper precautions and corrections.

Because liquid metals have such low emissivity, we need to:

- control background IR radiation (reflections of other sources)
- determine and correct for transmission factors for windows, gasses and vapors
- control or account for contamination of liquid metal

Future Work

- emissivity measurements
 - Lithium and Tin
 - apply Gallium window transmission corrections to previous Lithium experiments
- build and operate a flowing liquid (Li,Sn) metal loop
 - emissivity measurements of flowing liquid metals
 - Lithium
 - Tin
 - application of heat flux with electron beam
- collaborate with others on heat transfer experiments
- collaborate with others in preparing LM modules for experiments in confinement devices (NSTX, C-MOD,..)

